
QWOP-timization II: Can policies be inferred from many
examples?

Matt Sheen

Cornell University

1 minute summary vid link

QWOP is a “running simulator” video game which grew virally infamous for its difficulty. We
set about making a robot which plays the game. This is difficult since the game has black-box
dynamics with unobservable states, among other issues. We found a method to generate long
sequences of open loop actions by doing a kind of tree search on the controls on a simulated
version of the game. When replayed on the ‘real game,’ these trajectories fall apart after a couple
steps. Armed with numerous trajectories from our tree method, we are attempting to infer a control
policy. However, it’s possible that all our trajectories are sampled from different, incompatible
policies. More broadly, it is possible to have an near-infinite number of successful examples of a
task from which nothing can be learned. While trying to control QWOP, we want to address this
broader question also, which we think will become very relevant as more people try to transition
machine learning from object recognition to controls problems.

I. Introduction

To the general public, the problem of walking
coordination seems like it must be intuitive. We
know that locomotion control is difficult, but
this can be hard to demonstrate in a hands-on
way. Several years ago, a “running simulator”
game called QWOP exploded on the internet
(30 million hits), becoming notorious for its
difficulty despite seemingly simple controls.
It received considerable media attention and
spawned Guinness World Record competitions
(speed to run 100m). We attempt to beat the
world record time by finding a policy for con-
trolling QWOP (or at least post a competitive
time!). This game poses a few interesting prob-
lems including: locomotion controller design
with black box dynamics, control optimization
of a system which may only be forward simu-
lated from a fixed initial condition, very low-
dimensional control of a high-dimensional sys-
tem, dealing with unusual types of noise (e.g
the game’s internal clock cycles), and dealing
with numerous unobservable states inside the
physics engine.
So far, we’ve found a method for producing
arbitrarily-long sequences of running actions.
However, these open-loop trajectories can’t be,
say, put on a QWOP-playing robot. Hence, the

next steps is to find a policy.

II. About QWOP

QWOP is a web browser-based (Adobe Flash)
ragdoll physics game. The goal is to make a 2D
cartoon athlete run 100m on a track (although
most players won’t get more than a few meters).
The player uses the Q, W, O, and P keys on the
keyboard to apply coupled torques on the legs.
Q and W apply opposite torques to the thighs;
O and P apply opposite torques to the calves.
Arms and ankles are coupled to these actions.

III. QWOP ‘simulations’

We’ve made/used several versions of the game:

1. Real thing: The real game played in the
web browser using the keyboard.

2. Hacked game: Our hacked version of the
game which can receive external input at
precise physics steps.

3. Fast QWOP: The game recreated in Java
using the same physics engine and many
extracted parameters. It runs 1000x faster.

In a sense, the real game is analogous to a real
robot, with our hacked version being a high-

1

http://youtu.be/Tow8Uk76FHE

fidelity, noise-free simulation, and the recre-
ated version being a lower-fidelity, but fast sim-
ulation.

IV. Progress so far

Note: Some of this was presented at the Ohio State
Dynamic Walking.
So far we’ve considered the ‘trajectory opti-
mization’ portion of the problem: finding a
sequence of actions for running. Closing the
loop is the work coming up. Due to the black-
box nature of the game, the hidden states, and
the discrete timesteps & controls, we didn’t try
the more tradition approach of finding a peri-
odic gait – likely periodicity would require too
many steps. Instead, we look at the game as a
search through the space of possible controls.
This approach requires a lot of weeding down
since there are close to 101200 possible games
in the time of a world-record-pace game (50s).
We reduce this space greatly by parameterizing
sequences by delays between transitions rather
than the actions at every timestep. By watch-
ing videos of the pros, we further reduced it
to a single order of actions which is parame-
terized by 4 integer delays per gait cycle. For
reasonable delays, the search space is down to
1077, still too big to directly brute-force. Instead
we build trees out of the control actions, and
strategically explore these on “Fast QWOP."
Note that this is different from Rapidly Explor-
ing Random Trees (RRTs) in that our trees don’t
encode the runner’s state, only control actions.
The software we developed is visual and inter-
active, allowing us to inspect different regions
of the tree and find trends for successful behav-
ior, while pruning other areas. Likely the most
important heuristic is: falling forwards is better
than falling backwards. In QWOP, falling back-
wards is something that usually occurs over
the course of many actions, whereas falling for-
wards is very recent error. A simplified version
of the algorithm is to build a tree randomly for
awhile, find the most promising failures, go
back a few actions from the failure and keep
randomly building again, and repeat. With
this, we can find a random 100m trajectory in

Figure 1: QWOP screenshot.

roughly 5-10 minutes.

V. Next steps and the big

questions

These long trajectories don’t work on the real
game. Slight timing issues along with small
differences between the simulator and the real
game cause them to quickly fall apart. The goal
is to infer a policy from our library of trajecto-
ries, or be able to conclude that it is impossible.
A candidate method is to use a function ap-
proximator, like a neural network, to represent
the policy. Another approach might be to split
sections of actions into ‘motion primitives’ and
string these together. But, it is possible that no
method can infer a working policy from our
trajectories. If each trajectory is sampled from a
different, incompatible policy, then we cannot
generalize. Imagine trying to swing a pen-
dulum up, and we’re given many trajectories.
One swings the pendulum directly up from the
left. Another to the right. A third pumps an
extra swing before going up. A fourth pumps
two times. And so on. You could imagine that
if we are semi-randomly generating trajecto-
ries, like we’re doing with QWOP, we might
end up with trajectories like this. So, a broader
question is: can we recognize cases in which
trajectories can’t be generalized, and can we
find tricks to avoid or fix these cases. We think
this is particularly relevant as more machine
learning experts turn to controls problems now
that classification is getting boring.

2

